a2 United States Patent

Stewart et al.

US009123151B2

US 9,123,151 B2
Sep. 1, 2015

(10) Patent No.:
(45) Date of Patent:

(54) EXCHANGING DATA BETWEEN VERTEX
SHADERS AND FRAGMENT SHADERS ON A
GRAPHICS PROCESSING UNIT

(75) Inventors: Ian Stewart, Pierrefonds (CA); Dominic
Laflamme, Montreal (CA); Eric Cabot,
Montreal (CA)

(73) Assignee: AUTODESK, INC., San Rafael, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 2136 days.

(21) Appl. No.: 12/185,998

(22) Filed: Aug. 5, 2008
(65) Prior Publication Data
US 2010/0033483 Al Feb. 11,2010
(51) Imt.ClL
GO6T 15/50 (2011.01)
GO6T 15/00 (2011.01)
G09G 5/00 (2006.01)
GO6T 1/60 (2006.01)
(52) US.CL
CPCccoeonueue GO06T 15/005 (2013.01); GO6T 1/60

(2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0180440 Al*
2009/0033672 Al*

7/2008 Stich ... 345/426
2/2009 Jiao etal. ... 345/559

OTHER PUBLICATIONS

N. Robertson D. Sanders, P. Seymour and R. Thomas, “Efficiently
Four-Coloring Planar Graphs”, 1996, in Proc. Of the 28th Annual
ACM Symp. On Theory of computing, pp. 571-575.*

* cited by examiner

Primary Examiner — Tize Ma
(74) Attorney, Agent, or Firm — Artegis Law Group, LLP

(57) ABSTRACT

It is desirable for a fragment shader to have access to non-
interpolated values for each vertex of the primitive in which
the fragment is located. For example, a fragment shader may
use the distortion of the primitive with respect to an original
state of the primitive as part of the function the fragment
shader performs. Due to the specification of fragment shaders
and vertex shaders, fragments shaders receive only interpo-
lated values, and thus cannot receive non-interpolated values
of, for example, one solution to this problem would be to
modify the processing engine for the shader language, and the
shader specifications themselves, so that a fragment shader
can receive non-interpolated values from the vertices of the
primitive on which the fragment is located. Desirable values
to receive would be at least the vertex coordinates. Another
solution is to specify and use varyings in a manner that pass
data to a fragment shader that permit the fragment shader to
reconstruct the non-interpolated values. One way to achieve
this is to a. allocate varyings and assign them indices, b. assign
indices to the vertices and c. have each a shader contribute
only to those varyings having the same index as the vertex
being processed, and otherwise contribute a null value, such
as 0, to the varyings with other indices. In this manner, when
the interpolated value for the indexed varying is received by
the fragment shader, the indexed varying contains the contri-
bution of only one vertex, scaled by an interpolation param-
eter. Another indexed varying can be used to pass the inter-
polation parameter, allowing the original value for the vertex
to be computed by the fragment shader.

2009/0295804 Al* 12/2009 Goeletal.ccccouee. 345/426 6 Claims, 2 Drawing Sheets
300
ASSIGN INDICES |
TO VERTICES
v 302
DEFINE VARYINGS
FOR BARYCENTRIC
COORDINATES
v 304
DEFINE VARYINGS FOR
DESIRED VARIABLES
FILL VARYINGS BASED | 308
ON VERTEX INDEX WITH
ORIGINAL DATA;
FILL OTHER VARYINGS
WITH ZERO
! 306
PROCESSRECEVED |
VALUES TO RECONSTRUGT
ORIGINAL VALUES
} 208
UTILIZE ORIGINAL VALUES |
IN FRAGMENT SHADER

U.S. Patent Sep. 1, 2015 Sheet 1 of 2

US 9,123,151 B2

100

102 106
—>{ VERTEX ———>/ VARYINGS/
SHADER
| 04
FRAGMENT
SHADER ’
GPU
FIG. 1
vi{a}
vo{asy}
vi{as}

FIG. 2

U.S. Patent

Sep. 1, 2015 Sheet 2 of 2

300

ASSIGN INDICES
TO VERTICES

Y

DEFINE VARYINGS
FOR BARYCENTRIC
COORDINATES

302

Y

304

DEFINE VARYINGS FOR
DESIRED VARIABLES

|

FILL VARYINGS BASED
ON VERTEX INDEX WITH
ORIGINAL DATA;
FILL OTHER VARYINGS
WITH ZERO

305

Y

306

PROCESS RECEIVED
VALUES TO RECONSTRUCT
ORIGINAL VALUES

Y

UTILIZE ORIGINAL VALUES
IN FRAGMENT SHADER

308

|/

FIG. 3

US 9,123,151 B2

US 9,123,151 B2

1
EXCHANGING DATA BETWEEN VERTEX
SHADERS AND FRAGMENT SHADERS ON A
GRAPHICS PROCESSING UNIT

BACKGROUND

Using graphics processing units to render three-dimen-
sional objects typically involves writing computer programs
called “shaders.”” A three-dimensional object typically is
defined by a mesh, which is defined as a set of vertices and
edges among those vertices. The set of edges and vertices
define faces, where each face typically is a triangle, but may
in some cases be some other polygon, or even nonplanar.

A common programming language for writing shaders is
the OpenGL Shader Language (“GLSL”), which is is a high
level shading language based on the C programming lan-
guage. GLSL provides for, in general, two primary types of
shaders: vertex shaders and fragment shaders.

According to the OpenGL Shading Language specifica-
tion, language version 1.20, document version 8, dated Sep. 7,
2006, a vertex shader is written to run on a vertex processor in
an OpenGL pipeline. The vertex processor is a programmable
unit that operates on incoming vertices and their associated
data. The vertex processor operates on one vertex at a time. It
does not replace graphics operations that require knowledge
of several vertices at a time. A fragment shader is written to
run on a fragment processor in an OpenGL pipeline. The
fragment processor is a programmable unit that operates on
fragment values and their associated data. A fragment shader
cannot change a fragment’s x/y position. Access to neighbor-
ing fragments is not allowed. The values computed by the
fragment shader are ultimately used to update frame-buffer
memory or texture memory, depending on the current
OpenGL state and the OpenGL command that caused the
fragments to be generated.

In GLSL, a kind of variable, called a “varying,” provides
the interface between the vertex shaders and the fragment
shaders. Vertex shaders compute values per vertex and write
them to variables declared with the varying qualifier. By
definition, varying variables are set per vertex and are inter-
polated in a perspective-correct manner over the primitive
being rendered. A fragment shader may read from varying
variables and the value read will be the interpolated value, as
a function of the fragment’s position within the primitive. For
example, if each vertex of a triangle has a different color
associated with it, then the fragment shader, when applied to
a fragment of that triangle, would receive an interpolated
color value, based on the position of that fragment within the
triangle.

SUMMARY

It is desirable for a fragment shader to have access to
non-interpolated values for each vertex of the primitive in
which the fragment is located. For example, a fragment
shader may use the distortion of the primitive with respect to
an original state of the primitive as part of the function the
fragment shader performs. Due to the specification of frag-
ment shaders and vertex shaders, fragments shaders receive
only interpolated values, and thus cannot receive non-inter-
polated values of, for example, the coordinates in three-di-
mensional space of each vertex.

Accordingly, one solution to this problem would be to
modify the processing engine for the shader language, and the
shader specifications themselves, so that a fragment shader
can receive non-interpolated values from the vertices of the

30

35

40

45

50

2

primitive on which the fragment is located. Desirable values
to receive would be at least the vertex coordinates.

Another solution is to specify and use varyings in a manner
that pass data to a fragment shader that permit the fragment
shader to reconstruct the non-interpolated values. One way to
achieve this is to a. allocate varyings and assign them indices,
b. assign indices to the vertices and c. have each a shader
contribute only to those varyings having the same index as the
vertex being processed, and otherwise contribute a null value,
such as 0, to the varyings with other indices. In this manner,
when the interpolated value for the indexed varying is
received by the fragment shader, the indexed varying contains
the contribution of only one vertex, scaled by an interpolation
parameter. Another indexed varying can be used to pass the
interpolation parameter, allowing the original value for the
vertex to be computed by the fragment shader.

DESCRIPTION OF DRAWINGS

FIG. 1is data flow diagram illustrating a GPU programmed
using a vertex shader and a fragment shader.

FIG. 2 is an illustration of how values associated with
vertices are interpolated.

FIG. 3 is a flow chart describing an example implementa-
tion of reconstructing of vertex values in a GPU.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

Referring now to FIG. 1, a data flow diagram describing the
interface between vertex shaders and fragment shaders will
now be described. FIG. 1 shows a GPU 100 on which a vertex
shader 102 and a fragment shader 104 are executed. Informa-
tion produced by the vertex shader 102 includes, but is not
limited to, varyings 106.

According to the OpenGL Shading Language specifica-
tion, a kind of variable, called a “varying,” provides the inter-
face between the vertex shaders and the fragment shaders.
Vertex shaders compute values per vertex and write them to
variables declared with the varying qualifier. By definition,
varying variables are set per vertex and are interpolated in a
perspective-correct manner over the primitive being ren-
dered. In effect, referring now to FIG. 2, if a primitive (shown
as a triangle in this example) is defined by three vertices, v1,
v2 and v3, and if a vertex v1 has an associated attribute al,
vertex v2 has an associated attribute a2, and vertex v3 has an
associated attribute a3, then the fragment shader, when oper-
ating on a location v on the primitive, will receive the inter-
polated value a at that location.

One solution to this problem would be to modify the pro-
cessing engine for the shader language, and the shader speci-
fications themselves, so that a fragment shader can receive
non-interpolated values from the vertices of the primitive on
which the fragment is located. Desirable values to receive
would be at least the vertex coordinates.

Another solution is to specify and use varyings in a manner
that pass data to a fragment shader that permit the fragment
shader to reconstruct the non-interpolated values. One way to
achieve this has three parts. First, varyings are allocated and
indices are assigned to them. For example, instead of allocat-
ing a varying A, three varyings are allocated and assigned
indices, namely A1, A2 an A3. Second, indices are assigned to
the vertices. In this example, as shown in FIG. 2, the vertices
are V1, V2 and V3, with the indices being 1, 2 and 3 respec-
tively. Third, when a vertex shader computes its values for V1,
V2 and V3, the vertex shader contributes only to those vary-

US 9,123,151 B2

3

ings having the same index as the vertex being processed, and
otherwise contributes a null value, such as 0, to the varying
with other indices. For example, the vertex shader, when
applied to vertex V1 to generate a value for A, produces the
three varyings A1=A, A2=0 and A3=0. Similarly, the vertex
shader, when applied to vertex V2 to generate a value for A,
produces the three varyings A1=0, A2=A and A3=0. Finally,
the vertex shader, when applied to vertex V3 to generate a
value for A, produces the three varyings A1=0, A2=0 and
A3=A. In this manner, when the interpolated value for each
indexed varying is received by fragment shader, the indexed
varying contains the contribution of only one vertex, scaled
by an interpolation parameter.

Another indexed varying can be used to pass the interpo-
lation parameter, allowing the original value for the vertex to
be computed by the fragment shader. In particular, a vertex
shader merely sets this varying to the value “1”. Assuming
that the varyings B1, B2 and B3 are defined, the vertex shader,
when applied to vertex V1 to generate this value, produces the
three varyings B1=1, B2=0 and B3=0. Similarly, the vertex
shader, when applied to vertex V2 to generate this value,
produces the three varyings B1=0, B2=1 and B3=0. Finally,
the vertex shader, when applied to vertex V3 to generate this
value, produces the three varyings B1=0, B2=0 and B3=1. In
this manner, when the interpolated value for each indexed
varying is received by fragment shader, the indexed varying
contains the value of “1”, scaled by an interpolation param-
eter for that vertex, which is thus the interpolation parameter
used to produce the values of the varying provided to a frag-
ment shader.

As aresult, the original value for A for each of the vertices
can be determined by computing A1/B1, A2/B2 and A3/B3.
The original coordinates for each vertex can be computed by
the fragment shader by defining varyings for each coordinate
value in this manner.

FIG. 3 is a flowchart describing an example implementa-
tion of the processing performed to enable such reconstruc-
tion of values by a fragment shader.

As a preprocessing step, the mesh that is going to be pro-
cessed by the vertex and fragment shaders is indexed (300).
That is, an index is assigned to each vertex. However, for each
primitive, i.e., face in the mesh, each vertex has a unique
index. In other words, no two vertices in the same primitive
have the same index. Thus, for example, referring to FIG. 2, if
there were another triangle having, as one of its edges, the
edge between V1 and V3, its other vertex would have the
index V2. However, in a complex mesh, it generally is not
possible to meet this constraint.

In order to meet the constraint in an indexing algorithm, if
a vertex that is part of two primitives cannot be labeled
uniquely in both primitives, then the vertex is divided into two
vertices (having the same coordinates). But, one vertex is
placed in one primitive, and the other vertex is placed in the
other primitive.

As another implementation, instead of using only three
indices, four indices also could be used. The implementation
could be done using a four-color graph coloring algorithm,
that simply attempts to use four indices, and, if it fails, intro-
duces a discontinuity (splits a vertex into two) as would be
done if only three indices were used. An optional solution for
indexing is described in “Efficiently Four-Coloring Planar
Graphs”, by N. Robertson D. Sanders, P. Seymour and R.
Thomas, in Proc. Of the 28" Annual ACM Symp. On Theory
of computing, pp. 571-575, 1996. Using four indices reduces
the likelihood that a vertex would need to be split, thus reduc-
ing the amount of memory used to represent the mesh. How-
ever, with four indices, one of the resulting four varyings

10

15

20

25

30

35

40

45

50

55

60

65

4

received by the fragment shader will be not valid, i.e., the one
that is zero and for which the barycentric coordinate value is
Zero.

Each vertex shader is designed so as to provide the varyings
for the barycentric coordinates as described above. Accord-
ingly, when a vertex shader executes, it defines (302) the
varyings for these barycentric coordinates for each vertex.

A vertex shader also is designed so as to provide the vary-
ings for the variables which the fragment shader will recon-
struct, in the manner described above. Accordingly, when a
vertex shader executes, it defines (304) the varyings for these
desired variables for each vertex. Particularly useful variables
are variables representing the vertex coordinates.

As the vertex shader executes on a vertex, it fills (305) the
varyings based on the vertex index with the original data. The
other varyings (with other indices) are filled with zero.

The fragment shader receives, as it processes a current
location, or fragment, on a primitive, the interpolating vary-
ings representing the barycentric coordinates and the desired
values, and processes them 306 to reconstruct the original
values. The fragment shader then can utilize 308 these values.

As an example, a fragment shader could use the vertex
coordinates of a rest pose and a current pose on a primitive to
determine an estimate of stress, which in turn could be used to
apply wrinkle or skin coloration effects, as described in U.S.
Patent Application entitled “Producing Wrinkles and Other
Effects for a Computer-Generated Character Based on Sur-
face Stress,” by lan Stewart, and filed on even date herewith.

A memory usage optimization can be implemented when
the vertices are indexed using a four-color algorithm. As
noted above, one in four of each of the varyings defined in this
manner would be invalid, i.e., zero and not used. All of the
values from the varyings can be grouped together by index
and then placed in a texture. The offset of these values for a
given index can then be passed to the fragment shader along
with the texture. The invalid values may be placed in the
texture, but then are simply ignored by virtue of using the
offsets to access the values. The texture is generated by the
application that uses the vertex shader and fragment shader.

The techniques described above also can be implemented
in digital electronic circuitry, or in computer hardware, firm-
ware, software, or in combinations of them. The techniques
can be implemented as a computer program product, i.e., a
computer program tangibly embodied in a tangible informa-
tion carrier, e.g., in a machine-readable storage device, for
execution by, or to control the operation of, data processing
apparatus, e.g., a programmable processor, a computer, or
multiple computers. A computer program can be written in
any form of programming language, including compiled or
interpreted languages, and it can be deployed in any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing
environment. A computer program can be deployed to be
executed on one computer or on multiple computers at one
site or distributed across multiple sites and interconnected by
acommunication network. Each computer may implemented
using one or more programmable processors executing a
computer program to perform functions described herein by
operating on input data and generating output, or using spe-
cial purpose logic circuitry, e.g., an FPGA (field program-
mable gate array) or an ASIC (application-specific integrated
circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read-only memory or a

US 9,123,151 B2

5

random access memory or both. The computer includes a
processor for executing instructions and one or more memory
devices for storing instructions and data. Generally, a com-
puter will also include, or be operatively coupled to receive
data from or transfer data to, or both, one or more mass
storage devices for storing data, e.g., magnetic, magneto-
optical disks, or optical disks. Information carriers suitable
for embodying computer program instructions and data
include all forms of non-volatile memory, including by way
of example semiconductor memory devices, e.g., EPROM,
EEPROM, and flash memory devices; magnetic disks, e.g.,
internal hard disks or removable disks; magneto-optical
disks; and CD-ROM and DVD-ROM disks. The processor
and the memory can be supplemented by, or incorporated in
special purpose logic circuitry.

A number of implementations of the invention have been
described, by way of example only. It should be understood
that various modifications and other implementations may be
made without departing from the spirit and scope of the
invention. Accordingly, such modifications and other imple-
mentations are within the scope of the following claims.

What is claimed is:

1. A non-transitory computer-readable medium storing
instructions that, when executed by a processor, cause the
processor to implement:

a vertex shader having an output for providing output data

generated for a vertex in a mesh; and

a fragment shader having an input for receiving input data

corresponding to the output data from the vertex shader,
wherein the fragment shader can determine, based on the
input data, original values associated with each vertex
prior to the vertex being processed by the vertex shader,

10

15

20

25

30

6

each vertex defining a primitive that contains a fragment
being processed by the fragment shader.
2. The non-transitory computer-readable medium of claim
1, wherein the input data to the fragment shader includes the
original values associated with each vertex prior to the vertex
being processed by the vertex shader.
3. The non-transitory computer-readable medium of claim
1, wherein the input data to the fragment shader includes an
interpolation of the original values associated with each ver-
tex prior to the vertex being processed by the vertex shader,
and wherein the fragment shader reconstructs the original
values.
4. The non-transitory computer-readable medium of claim
1, wherein the processor further implements:
an indexer that processes the mesh to assign an index to
each vertex in the mesh, wherein the index for each
vertex is unique among the vertices defining each primi-
tive in the mesh.
5. The non-transitory computer-readable medium of claim
4, wherein the indexer implements a four-color graph-color-
ing algorithm.
6. The non-transitory computer-readable medium of claim
4, wherein the vertex shader, when processing a vertex to
generate a value, both:
sets, to the generated value, a varying-kind variable,
wherein the varying-kind variable corresponds to the
index assigned to the vertex being processed; and
sets, to a value of zero, other varying-kind variables,
wherein the varying-kind variables do not correspond to
the index assigned to the vertex being processed.

#* #* #* #* #*

